Is Your Project Robust to the Impacts of Climate Change and Disasters?

STORY HIGHLIGHTS

  • A stress testing methodology and tool were recently developed to ensure that the economic analyses of World Bank projects properly consider climate and disaster risks.
  • When applied to a transport project in India, the methodology demonstrates that the project is robust to even highly pessimistic climate and disaster scenarios.
  • If deployed widely, this methodology and tool could help ensure that all investments are designed to be robust and resilient to climate and disaster risks and thereby promote adaptation to climate change.

Climate stressors such as temperature increases, sea level rise, water scarcity, and extreme weather events including droughts, hurricanes and floods, are increasingly posing risks to the health, livelihoods, and wellbeing of households and communities. They disrupt critical services, reduce agricultural productivity, and destroy infrastructure and dwellings with increasing frequency. To minimize the effect on people’s wellbeing, these impacts need to be considered and integrated in all investments and projects, regardless of their sector, nature, and financing. Ideally, no building, factory, transport infrastructure, or any other asset, should be designed and built without considering disaster and climate risks.

This applies particularly to World Bank projects: to maximize development benefits, it is critical to ensure that our investments are robust, throughout their lifetimes, to a changing climate. The World Bank Group’s newly launched Climate Change Action Plan 2021-2025 starts from the premise that climate and development need to be integrated. To help align climate and development, the newly launched Resilience Ratings System provides a simple approach to measure and disclose the extent to which adaptation and resilience considerations have been integrated into project design. The Resilience Rating System is currently being piloted in a number of investment projects supported by the International Development Association, the World Bank’s fund for the poorest countries. The Resilience Rating System provides a rating from C through to A+ along two complementary dimensions: (1) the resilience of the project design – or the robustness of project design to disaster and climate risks, and the confidence the project will perform as expected in spite of these risks; and (2) the resilience through project outcomes – or the project’s broader contribution to building the climate resilience of beneficiaries. These two dimensions are complementary but different. In particular, all projects should be made resilient to disaster and climate risks, while not all projects need to boost resilience (there are many other valid development outcomes).

“To help align climate and development, the newly launched Resilience Ratings System provides a simple approach to measure and disclose the extent to which adaptation and resilience considerations have been integrated into project design.”

To achieve an “A” rating in the resilience of the project design dimension, projects are required to demonstrate that a climate and disaster risk stress test has been incorporated in the project’s economic and financial analysis. Projects are also required to report on how, after risk reduction measures are included, residual risks do not make the project economically or financially unviable (or they at least must disclose the existence of any residual risk).

In this interview, World Bank Climate Change Lead Economist Stéphane Hallegatte and Senior Climate Change Specialist Veronique Morin explain how the climate risk stress testing methodology can support project teams by identifying potential climate and disaster risks to a project and inform decision makers on project robustness.

What is the history behind the Risk Stress Test methodology? What is the methodology designed to do?

The Resilience Rating System has been piloted in more than 20 projects. Early results  have demonstrated that incorporating a climate and disaster risk stress test is far from straightforward. To help teams perform such a stress test, the World Bank just released a new report, Integrating Climate Change and Natural Disasters in the Economic Analysis of Projects, which provides a methodology – and a tool – to perform a disaster and climate stress test.

Because future changes in climate conditions are highly uncertain, the methodology does not recommend predicting a revised net present value or rate of return. In particular, for projects with long lifetimes, uncertainties are too large and results would be overdependent on assumptions and hypotheses, and risk creating overconfidence.

Instead, the methodology suggests to perform a stress test as part of a project’s economic analysis using various scenarios ranging from the most optimistic to the most pessimistic, and to identify the conditions under which the project may fail, as well as the consequences in case of failure. A reporting template is then proposed to help decision makers assess the level of residual risks, and therefore the project’s attractiveness and economic feasibility.

Practically, the methodology is designed to highlight the risks to project outcomes and evaluation criteria (such as net present value and benefit-to-cost ratio) over long time horizons, in multiple scenarios and accounting for risks along three dimensions:

  • Changes in average climate conditions (e.g., temperature, precipitation);
  • Impacts from natural disasters, with historic frequency and intensity (e.g., hurricanes, floods, wildfires); and
  • Changes in the occurrence of future disasters due to climate change.  

 

“Early results  have demonstrated that incorporating a climate and disaster risk stress test is far from straightforward.”

How can the methodology be implemented?

The report provides step-by-step guidance for considering and incorporating climate risk stress testing into a project’s economic analysis, and general and sector-specific climate and disaster information resources to support the analysis. To assist with the implementation of the stress testing, an accompanying Excel-based Risk Stress Test (RiST) Tool has been developed to illustrate how the three components of climate and disaster risks can be incorporated in a project’s economic analysis, how climate and disaster impacts can be reflected in components of project costs and benefits, how decision metrics can be evaluated under alternative climate scenarios, and how key assumptions and inputs (such as the discount rate) may change the results of the analysis. Moreover, the tool can help determine threshold conditions under which a project may become economically undesirable and thereby help project teams identify possible risk reduction measures. A series of short one to three-minute training videos are provided to demonstrate the applicability of the RiST tool.

Are there any examples of how the methodology has helped project teams identify possible climate and disaster risks and evaluate project robustness?

Illustrative applications are provided for projects in energy, transport, water infrastructure, and agriculture. One of these projects is the  Integrated Transport Project in the state of Meghalaya, India. This project aimed to improve transport connectivity and efficiency and modernize transport sector management. Given that Meghalaya is in one of the wettest regions in the world, the analysis accounted for climate risks by estimating the impact on the costs and benefits of the project of changes in average conditions (i.e., temperature and rainfall patterns) and natural hazards (i.e., landslides and flooding), considering current and future frequency and intensity. The analysis demonstrated that even with a pessimistic baseline scenario (assuming delays in implementation and increase in costs) and a high-end climate impact scenario, the project is still anticipated to generate a positive Net Present Value, even though the expected net benefits can be halved by disaster and climate risks.

Beyond the result of the analysis, the implementation of the stress test guided the team in its exploration of possible disaster and climate risks and provided important information to help assess the project’s economic feasibility, therefore contributing to proper climate and disaster risk management and reduction, and increasing our confidence in the project’s ability to deliver its expected results in spite of today’s and tomorrow’s climate risks. 


 
 
 

eC2: ANALYSIS OF NATURE BASED SOLUTIONS TO REDUCE NATURAL DISASTERS IMPACTS IN CENTRAL AFRICA REGION

Deadline:    01-Apr-2021 at 11:59:59 PM (Eastern Time – Washington D.C.)

The World Bank Group now invites eligible firms to indicate their interest in providing the services. Interested firms must provide information indicating that they are qualified to perform the services.Interested firms are hereby invited to submit expressions of interest.

Expressions of Interest should be submitted, in English, electronically through World Bank Group eConsultant2
Following this invitation for Expression of Interest, a shortlist of qualified firms will be formally invited to submit proposals. Shortlisting and selection will be subject to the availability of funding. Only those firms which have been shortlisted will receive notification. No debrief will be provided to firms which have not been shortlisted.

Continue reading

eC2: Impacts of Natural Disasters on the Agro-Sylvo-Pastoral and Fisheries Sectors in Central Africa

Deadline:    01-Mar-2021 at 11:59:59 PM (Eastern Time – Washington D.C.) index

1. Develop a diagnosis on damage and losses caused by natural disasters in agro-sylvo-pastoral and fisheries/aquaculture sectors of ECCAS Member States since 2010. This report should present on one hand types of damages and losses per types of natural hazards and highlight on the other hand the relative importance of products by value (export vs food security), and finally how the sectors (agriculture and fisheries/aquaculture) provided access to food and livelihoods during and after the disasters. This task will be undertaken thru a desk review and consultative interviews/ survey of the agriculture/fisheries and aquaculture and disaster risk management Focal Points of the Member States.
2. Prepare a guide on national and international existing mechanisms such as climate smart agriculture practices etc, based on good practices, to strengthen and build the livelihoods of rural populations affected by natural disasters in Member States.
3. Identify agro-sylvo-pastoral and fisheries/aquaculture sectors specific needs for hydrometeorological (Hydromet) services to build resilience and capacity to reduce the effects of natural disasters. This task will be completed by consultative interviews/ survey of the agriculture/fisheries and aquaculture focal points.
4. Based on the diagnosis, on identified mechanisms and sectoral Hydromet needs, propose recommendations for a resilient agriculture and building the livelihoods of rural populations affected by natural disasters in ECCAS region.

Continue reading

Harnessing creativity for change: The art of resilience

Scientists are constantly getting better at knowing when the next hurricane, landslide, or aofr-facebook_0.pngflood will happen. However, science communication about these disasters lags behind. As Leonardo da Vinci described, art has a unique power to communicate this type of knowledge to people everywhere.  

Natural events and disasters of the past have influenced some of the most iconic art of our time. From Turner’s sunsets to Mary Shelley’s Frankenstein – both were composed in the shadow of the greatest volcanic eruption of our age, Mount Tambora in 1815. The Great Wave off Kanagawa by Japanese artist Hokusai (c. 1829–33) has been interpreted as a warning about tsunami risk. In an era of increasing natural hazards and climate change, art can also communicate the future risks we face.

Continue reading

Rebuilding communities after disasters – four and a half lessons learned

The death toll from Cyclone Idai that ripped into Mozambique, Zimbabwe, and Malawi in IDAI Aftermath - A man fixes the roof of his house in Praia NovaMarch 2019 is now above 1,000, with damages estimated at $2 billion. In 2018, more than 10,000 people lost their lives in disasters (with $225 billion of economic losses). Approximately 79 percent of fatalities occurred in the Asia Pacific region, including the catastrophic earthquake and tsunami in Indonesia’s Sulawesi Island. In fact, 2017 and 2018 have been estimated as the most expensive back-to-back years for weather disasters, totaling $653 billion of losses.

Continue reading

After disasters hit, how countries and communities can build back better

asset_3Disaster losses disproportionately affect poor people, according to the 2017 “Unbreakable” report. The Caribbean Hurricane season of 2017 was a tragic illustration of this.

Not one, but two Category 5 hurricanes wreaked destruction on numerous small islands, causing severe damages on islands like Barbuda, Dominica, and Saint Martin. The human cost of these disasters was immense, and the impact of this devastation was felt most strongly by poorer communities in the path of the storms.

Continue reading